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Gau of the
con bra

FromS-C transformations
S-C gauge algeb










Schematic: Conformal
construction of gravity

conformal scalar action local conformal symmetry

(contains Weyl fields

Gauge fix
dilatations and
special conformal transformations

v

Poincaré gravity actioh local symmetry




Covariant derivatives and curvatures

Gauge theory rules



Special issues for local translations

\ J

|
when local absorbed 11a”(x) ® x"(x)
problem:

Remove gct from the sum over all symmetries:
all the others are called ‘standard gauge transformations’.

- Replace translations with ‘covariant coordinate transformations’



4. Constraints
and the Weyl| multiplet

FromS-C gauge algebra
Soft $-C algebr:



Susy gauge theories
Gauge multiplet (in WZ gauge)

D
D
DO



Modified symmetry algebra:
soft algebra

Not mathematical Lie algebra

When extra gauge symmetries, gauged by the vector
multiplets, the derivatives become covariant

The algebra issoft:

structure constants become structure functions.
Modified Jacobi identities

Later: when studying solutions: functions becomestants.
Leads to e.g. AdS or central charges in a Lie abyeb



Gauge fields and the Weyl multiplet

Q, determined by
CD\ constraints

translations :




‘Conventional’ Constraints
and the Weyl multiplet

Often need extra fields in order to satisfy an ltgevith gc

e.g. D=4, =2 P > P

24+24
e.g. D=6, =2
40+40




Soft algebra

E.g. D=4, =2






The strategy

example of pur®=4, =1 supergravity

local conformal symmetry

chiral multiplet + Weyl multiplei
superconformal action

Gauge fixdilatations, special conform
transformations, S-susy and R-symmetry

A 4

Poincaré supergravity action local symmetry

chiral multiplet: ‘compensating multiplet’:
fields will be fixed to constants, some fields may remain:
e.g. auxiliary scalar in minimal sugra,
graviphoton in =2
for matter couplings: start with more conformal tipléts



The action

Superconformal-invariant action

Gauge fixing
super-Poincareé action

Extension: adding a (conformal-invariant) potential term for
the chiral multiplet cosmological constant and gravitino-mass term



Stay In the gauge
decomposition law

Symmetry with parametey®
Symmetries with parametegs
We want to gauge fix the first with a condition
f( )=0

f=dy( ) g®+d( ) qg' with d,invertible.
decomposition lawg®= (1/dy) d( ) g’

After gauge fixing:
ew (@) = oa(@) + [g°= (1dg) d( ) g")]



Gauge fixing mixes symmetries

‘Decomposition laws’: e.g.

In superconformal algebra, e.q.

Other example: U(1) gauge fixing in presence oénth
gauge symmetries:

Implies that Is function of other gauge symmetries:
hence these symmetries act partially as

‘gauged R-symmetry’



6. Solutions and Killing symmetries

FromSoft S- algebra
Rigid S-AdS algebra



AdS superalgebra

the =1 example of soft super-algebra

leads to anti-de Sitter for solution wia O



/1
Brane solutions with adS
T near horizon geometry
— 7

¥

Harmonic function in
transverse dimensions

Brane solution interpolates between
asymptotically flat and near horizon adS

or: horizon limit as large N (many branes)




AdS (super)isometries

Isometry group

Solution preserves also rigid supersymmetry

transformation SC(d,2)  SUS)
SUSY SqQd +2)



/.World volume theory In
background

FromRigid S-AdS algebra
Rigid symmetries + GCT k - SUSY



Bosonic world-volume theory

solution metric

has rigid symmetries inherited from solution:

* AdS Isometries
* Isometries of sphere

has GCT ind-dimensional worldvolume



Wess-Zumino term

related to (p+2)-field strength form of the

p-brane over surface with world-volume as
boundary.

Exact form varies for different cases, see
e.g.



Supersymmetric theory

In terms of superspace coordinates
and possibly other forms

barred is flat index
D=4, p=0 examplt

flat superspace



- symmetry

IS complicated, but relevant:
=1 and Tr = 0 : projection such that

- half of spinor transforms

- Is effectively only half a spinor
(reducible symmetry)






Gauge fixing of GCT on brane and
of -symmetry

XM @s@, x™)

Coordinates of space-time€™ as functions of
world-volume coordinates describe place of brane
In spacetim

General coordinate transformations on world-

volume can bgauge-fixed identify withp+1
spacetime coordinates

Similar split In half that can be gauge fixed. These
aregauge-fixedo zero.



Superconformal symmetry

Gauge fixing preserved by combinations of the
local symmetries and the (super)AdS isometries

After the gauge fixings: multiplet of
(p+1)-dimensional supersymme

Preserved symmetries are rigid superconformal
symmetries ip+1 dimensions



Summary

Many appearances of superconformal
symmetry ...
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