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Why Study Conformal Field Theories?

Many reasons to study Conformal Field Theories:

I QFTs often ow to conformal xed points
I They describe quantum gravity via AdS/CFT

I They describe condensed matter systems
[



Why Study Conformal Field Theories?
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I 4D CFTs could play a role in physics beyond the Standard Model!

Walking/Conformal TechnicolorHoldom 's1; ..]

Warped Extra Dimension@andal, sundrum '99; ...]

Flavor HierarChie&}eorgi, Nelson, Manohar '83; Nelson, Strassler '00; DP, Sinmons-Du n '09; ...]
Conformal Sequesteringuty, sundrum ‘1]

Solution to =B problem[Roy, Schmaltz '07; Murayama, Nomura, DP '07]



Why Study Conformal Field Theories?

However, ideas often deperatuciallyon spectrum of operator dim's...

I Conformal TechnicolofLuty, Okui '04]:
(previously \Strong ETC")

H

I Higgs eld is CFT operatoH , with couplings + ! H g u;
I Want y 1to give top mass without low avor scale
I Want ,y4 & 4to solve hierarchy problem
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Why Study Conformal Field Theories?

However, ideas often deperatuciallyon spectrum of operator dim's...

I Conformal TechnicolofLuty, Okui '04]:
(previously \Strong ETC")

H

I Higgs eld is CFT operatoH , with couplings + ! H g u;
I Want y 1to give top mass without low avor scale
I Want ,y4 & 4to solve hierarchy problem

Is this even possible???

Theories that don't work...

I Perturbative CFTs: y =1+ O(), nyyy =2+ O()
| Large-N CFTs: yy =2 n + O(1=N?)



A Way Forward...

[Rattazzi, Rychkov, Tonni, Vichi '08]

‘Crossing Symmetry + Unitarity leads tboundson operator dimension$!

I Concrete realization o€onformal Bootstrapn D > 2 [Polyakov '74]
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A Way Forward...

[Rattazzi, Rychkov, Tonni, Vichi '08]

‘Crossing Symmetry + Unitarity leads tboundson operator dimension$!

I Concrete realization o€onformal Bootstrapn D > 2 [Polyakov '74]

Idea was then extended to:

I N =1 Superconformal TheorieP, Simmons-Du n '10]

I CFTs with global symmetriefRattazzi, Rychkov, Vichi '10; Vichi '11]
I Bounds on 3pt function coe cients

I Scalar 3pt functiongCaracciolo, Rychkov '09]
I Flavor Symmetry Current§DP, Simmons-Du n '10]
I Stress TensofDP, Simmons-Du n '10; Rattazzi, Rychkov, Vichi '10]

I New methods and latest 4D results jpP, Simmons-Du n, Vichi '11]
I 3D bounds![EIl-Showk, Paulos, DP, Rychkov, Simmons-Du n, Vichi, in pogress]
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CFT Review

CFT Review: Algebra and Primary Operators

The conformal algebr&0O(4; 2) contains:

| TranslationsP2 and rotationsM 2°
I DilatationsD (scale transformations)
I Special conformal generatok 2 (inv. ! trans.! inv.)

K2 PP=2 3D 2V




CFT Review

CFT Review: Algebra and Primary Operators

The conformal algebr&0O(4; 2) contains:

| TranslationsP2 and rotationsM 2°
I DilatationsD (scale transformations)
I Special conformal generatok 2 (inv. ! trans.! inv.)

K2 PP=2 3D 2V

I Primary operatorsO(0) are de ned by[K 2;0(0)] =0
I Descendant®btained usingP?; O(0)] = @0O(0)



CFT Review
CFT Review: Correlation Functions

I Conformal symmetry xes primary 2pt and 3pt functions in terms of
dim's and spins, up to coe cients o [Polyakov '70; Osborn, Petkou '93]
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CFT Review: Correlation Functions

I Conformal symmetry xes primary 2pt and 3pt functions in terms of
dim's and spins, up to coe cients o [Polyakov '70; Osborn, Petkou '93]

. h . lAabjab x2,x?
hoal..a (X]_)Obl"b (X2)| — - |ab ab 2 122 12
X X
12 12
. Zaz& x8 x8
aia - a 31 32
h (x1) (Xx2)O™ " (X3)i = o > T N - Z 2 X2
X712 Xp3 Xi3 31 X3
*0 [Mack 77]

I In Unitary CFTs, there's a lower bound ~ +2
I Requirement that 2pt functions of descendants are0



CFT Review

CFT Review: Correlation Functions

I Conformal symmetry xes primary 2pt and 3pt functions in terms of
dim's and spins, up to coe cients o [Polyakov '70; Osborn, Petkou '93]

. . . |abab x2,xb
hoat-=& (X]_)Obl"b‘ (Xz)l — i [ ab ab 2 122 12
X12 X1
o . VA MVAS x2 x2
h () (O™ (xg)i = o Z® 3 2
X1o Xo3 Xi3 31 32
I In Unitary CFTs, there's a lower bound ~ +2 *-0 [Mack '77]

I Requirement that 2pt functions of descendants are0

I Highern-pt functions not xed by conformal symmetry alone, but are
determined once spectrum andy's are known...



CFT Review: Operator Product Expansion

Let be a scalar primary in a 4D CFT:

X
(x) (0) = oCi(x;@0'(0)  (OPE)
02

I Sum runs oveprimary O's
I O! = 0% any spin: Lorentz rep with® =0;2;:::
I Ci(x;@ xed by conformal symmetry

' E.g., forscalarC(x;@ x 2 1+ 3x2@+:::
I See[Dolan, Osborn '00] for full expressions



CFT Review

CFT Review: Conformal Block Decomposition

Use OPE to evaluate 4-point functiofferrara, Gatto, Grillo '73; ...]

h (X1) (ng< (X3) (X4)l

= 2C) (x12; @)Cj (x34; @)hO (x2)O? (Xa4)i
02

X

- 59 ;(u;v)

X120 X34 02

2 2 2 2 . . .
I u= 2228 v = X%z conformally-invariant cross ratios.
X13X24 X13X24

I g -(u;v) conformal block (=dim O and" = spin ofO)
I Power series expansions known since 70's, now known in tefms o
hypergeometric functionfDolan, Osborn '00; Dolan, Osborn '03]



CFT Review: Conformal Blocks

Explicit formula[Dolan, Osborn '00]
zz
z Z
XT%F1(=2 =2 ;X);

ke 1(D)k 1 220 z$ 7]

ICHY
k (x)

whereu = zzandv=(1 2z)(1 2).

I Similar closed-form expressions in other even dimensionsysemn
relations known in odd dimensions

I Alternatively can be viewed as eigenfunctions of the quadr&tasimir
of the conformal groufDolan, Osborn '03]



CFT Review: Crossing Relations

I h (X1) (X2) (X3) (X4)i is symmetric under permutations of;
I Switchingx1 $ x3 after OPE gives the \crossing relation™:
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CFT Review: Crossing Relations

I h (X1) (X2) (X3) (X4)i is symmetric under permutations of;
I Switchingx1 $ x3 after OPE gives the \crossing relation™:

P 1 4 P 1 4
>;< _ jE
2 3 2 3
X 2 X 2
29 c(uv) = Y 29 (viu)
02 02

This is aconstrainton the spectrum of 's, *'s, and ¢'s:

I Important implications for BSM scenarios!
I Many insights about CFTs just waiting to be extracted...



CFT Review: Crossing Relations

Convenient to write as a sum rule (separating out 1+::)
X
1 = Z2F -~ (u;v)
{z} | {z }
unit op. everything else

g ~(uv) u g (viu),
u v ’

where F -(u;v)



CFT Review: Crossing Relations

Convenient to write as a sum rule (separating out 1+::)
X
1 = Z2F -~ (u;v)
{z} | {z }
unit op. everything else

g ~(uv) u g ;‘(V;U):

where F -(u;v) " >

Note: this can also be generalized to CFTs with global symnastri

I Crossing oh ; j i for SO(N) (or h{ ¢ |i for SUNN))
gives asystemof sum rulegRattazzi, Rychkov, Vichi '10]

I InN =1 SUSY theories, ¢'s are also relatedg ~ ! G
(Superconformal Blocks)bP, DSD '10; Fortin, Intriligator, Stergiou '11]
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Bounds from Crossing Relations

How Does Crossing Symmetry Lead to CFT Bounds?

Crossing relation for real scalar.

X
1 = 2F < (u;v)

{z} I {z }

unit op. everything else
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Bounds from Crossing Relations
How Does Crossing Symmetry Lead to CFT Bounds?

Crossing relation for real scalar.

X
1 = 2F ~(u;v)
Iz} |—f(z—}
unit op. everything else

I Make an assumption: all scalars have dimensiorr  min
I Search for a linear functional such that

1) < 0 and
(F ) 0; for all other O 2

I If you nd one, the assumption is ruled out!



Bounds from Crossing Relations

CFT Bounds

Convenient to phrase search as a convex optimization problem:

Minimize (1) subjectto (F ~) O

| Adding normalization (F ,:,)=1 gives abound 3 (1)
I It would be very interesting to solve this analytically! Hard..
I However, great progress has been made numerically



Bounds from Crossing Relations

CFT Bounds

Convenient to phrase search as a convex optimization problem:

Minimize (1) subjectto (F ~) O

| Adding normalization (F ,:,)=1 gives abound 3 (1)
I It would be very interesting to solve this analytically! Hard..
I However, great progress has been made numerically

First Approach:[Rattazzi, Rychkov, Tonni, Vichi '08]

I Impose (F ,-,) Oona nite lattice f( i; i)g
(verify positivity on intermediate values later)
I Take to be linear combinations o @'F .- at some point

I Implement as dinear programmingoroblem that can be solved
numerically (e.g., by Mathematica, GLPK, CPLEX, ...)



Bounds from Crossing Relations

Bounds ondim 2 (from [Rychkov, Vichi '09])

55t
s0f
45f

£4.0 :

I Bound on lowest dim scalar in OPE, whered =dim( )

I Dierent lines correspond to increasing space of derivatives
(N =18 $ 55-dimensional space)



Bounds from Crossing Relations

Bounds ondim 2 (from [Rychkov, Vichi '09])

ssf
5.0
4.5f
£4.0f
3.5
3.0

25t

2.0
1.

d
I Not yet useful for Conformal Technicolor, since
Re(Ho) Re(Ho) HYH+HYH +:::
I Need to distinguish betwee8U(2)w representations!
I Linear programming tricky for systems of crossing relations...



Bounds from Crossing Relations

Semide nite Programming

Latest ApproachDP, Simmons-Du n, Vichi '11] :

I Derivatives of conformal blocks can be arbitrarily-well apprcexied by
positive functions times polynomials:

@a@rF ;' -0 P™(



Bounds from Crossing Relations
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Latest ApproachDP, Simmons-Du n, Vichi '11] :

I Derivatives of conformal blocks can be arbitrarily-well apprcexied by
positive functions times polynomial_s:
@a@F ;' () P™()
I A polynomialP () is positive over an intervgD;1 ) i it can be

written asP ()= f()+ o() , wheref () andg() are
sums-of-squares of polynomigHilbert, 1888]



Bounds from Crossing Relations
Semide nite Programming

Latest ApproachDP, Simmons-Du n, Vichi '11] :

I Derivatives of conformal blocks can be arbitrarily-well apprcexied by
positive functions times polynomials:

@a@F ;' () P™()
I A polynomialP () is positive over an intervgD;1 ) i it can be
written asP ()= f()+ o() , wheref () andg() are
sums-of-squares of polynomigHilbert, 1888]

I A sum-of-squares can be represented bgasitive-semide nitematrix
Af()=[]1 JAIL] q, where[] J=(1; ;:::5 9



Bounds from Crossing Relations
Semide nite Programming

Latest ApproachDP, Simmons-Du n, Vichi '11] :

I Written in this way, the problem is phrased assamide nite
programmingproblem, which can be solved by available software
packages (we used SDPA-GMP)

I We were able to push bounds w/ global symmetries from a
10-dimensional space of derivatives to6&-dimensional space

I We ran points in parallel on Harvard's Odyssey computing cluster

Now for some results...



Latest Results
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Latest Results
Singlet Dimension Bounds

Upper bound on 2

1 1:2 14 1:6 1:8

I Bound on lowest dim scalar in OPE
I Best bound:66-dimensional space of derivatives



SO(4) or SU(2) Singlet Dimension Bounds

Upper bound on ¥ for SO(4) or SU(2)
y
55

16 1:8

| Lowest dim singletin) ;, where ; is SU(2) fundamental
I Has implications for Conformal Technicolgtuty, Okui '04]



Latest Results
Bounding Conformal Technicolor

Viable Regions for Conformal Technicolor Models
5:5 g

5
4:5

4
35

3
2.5

2 1:2 1:4 1:6 1:8 H

I Red: Flavor generic (4-ferm op's ha¥®1) avor violation)
I Green: Flavor optimistic (4-ferm op's Yukawa suppressed)
I 3 lines: Stability against perturbatioocHYH with ¢ (1;0:1; 0:01)



SO(N) or SU(N=2) Singlet Dimension Bounds

Upper bound on ¥ for SO(N) or SU(N=2), N =2::15
y

5
4:5
4
35
3
25
2

1 1:2 1:4 1:6 1:8

| Bounds get weaker aNl increases
I SO(N) bounds andSU(N=2) bounds are identical



Latest Results
Superconformal Operator Dimension Bounds

Upper bound on Y in SCFTs

5:5¢

5

4.5¢

4l

35/ oy =2
2:5¢

1 1:2 14 16 1:8

I Bound on lowest dimension scalar in ¥ OPE, where is a chiral
superconformal primary in aN =1 SCFT
I Bound appears to asymptote to the line y, =2 near 1



Latest Results
Superconformal Operator Dimension Bounds

Upper bound on ¥ in SCFTs

55

5!

4:5¢

4!

35 Ty =2
2:5¢

1 1:2 14 1.6 1:8

I At largeN, constraint onO(1=N?) corrections to
I Positive sign seems allowed in AQSFT [Fitzpatrick, Shih '11]

I We also see &ink near 1:4, maybe an SCFT lives there?



Latest Results

For Comparison: 2D Dimension Bounds

%"— T T T T T T Ir
L 9 “‘9/&—“'\:\‘ "
$ 4t e T
: Yon ’ _ 1
L ) o\' S& ////
p "l- N \ |‘—‘) //// E
- $ ‘\0/& \\ *+O’ ////
[ Vop. -
e QO 1
L

s !"!'# !"é! I$# !"5/0! !"5/045 !"éL! !"&#
!

[Rychkov, Vichi '09]

I Kink at 2D Ising model, exact solution;: = 1=8, =1
I Bound saturated by operators in unitary minimal models



Latest Results
For Comparison: 3D Dimension Bounds

See Alessandro's Talk!



Latest Results

Scalar OPE Coe cient Bounds

Upper bounds on scalar OPE coe cients, =1:01::1:66
Oo

4

4

1
0 . . : 0
1 1.5 2 2.5 3 35 4
I Bound on size of scalar OPE coe cient 0000

I As ' 1 nicely converges to free valueg, = P 2at =2



Upper and Lower Bounds orf OPE Coe cient in SCFTs

Upper and lower bounds on 2

1 12 14 16 18 2
I Now we consider the OPE 24+ ::: where =2
I Scalar descendants of non-chiral operatojéo can appear, but
unitarity forces 5% ] 2 3j+3

I Lower boundgpossible due to gap in dimensions for < 3=2



Latest Results
The Stress Tensor

Tajsa =4 ;" =2 operator present in every CFT:

I Ward identity xesh T i/
I Only unknown:hT Ti/ c, the central charge
I In SCFT,T part of U(1)r current multiplet (=3 ;> =1)

Ja=J8+ T+

I Conformal block contributions are

2
360: g4;2
2

y Yi - .
h | o Gan (SCFTs)

(general CFTs)



Latest Results

Lower Bounds on ¢

Real Scalar c Chiral Scalar in SCFT

——

1 1:2 1:4 1:6 1:8 1 1.2 1.4 1:6 1:8

I Bound smoothly approaches free values as! 1

I Ciree = % (real scalar)
| Ceniral = 54 (Chiral super eld)

I IfaCFT containsa =1 scalar,c= Cyee * CGnt  Ciree

I In dual AdS description,c R3M3
I Bound! Fundamental limit to strength of quantum gravity!



Latest Results

Lower Bounds on ¢ fd8O(N) or SUNN), N =2::15

SO(N) or SU(N=2) Scalar SU(N) Chiral Scalar in SCFT
c c

14Cree 16Cchiral

: 14cchiral |
12Cchiral
10cchiral
8Cchiral
6Cchiral T
ACchiral
2Cchiral

0

2Cfree - — .
01 1:1 1.2 1.3 1.4 1.5 1.6

1 1.2 1.4 1.6 1:8
I All lower bounds approach the free valul€ee Or NCchiral @S

I' 1, growing linearly withN near 1

I Also similar bounds on current 2pt functiongd'J?i/ M
I Bound on strength of bulk gauge couplings in AdS



Latest Results

Future Directions

Some future directions for this program:

I 3D Bounds (next talk!)
[ElI-Showk, Paulos, DP, Rychkov, Simmons-Du n, Vichi, in pogress]

I Explore kink in 4D ¥ bound! known SCFT or something new?

I Generalize t6SU(N) SU(N) and compare to concrete theories
(e.g., SQCD)[DP, Simmons-Du n, Vichi, in progress]

I 4pt functions of containing 2 or operators with spin
(for conformal blocks segCosta, Penedones, DP, Rychkov '1})]

I Bounds in other dimensions (e.g., 6D, 88, ,...) or more SUSY
I Improve analytic understanding
I AdS dual interpretation?



Latest Results
To Summarize...

We are learningienuinely newhings about strongly-coupled theories
with little or no supersymmetry. Stay tuned!



Latest Results
Backup Slides



Latest Results
CFT Review: Conformal Blocks

Explicit formula[Dolan, Osborn '00]

ke 1@k 122 28 7]

XT%F1(=2 =2 ;X);

ICHY
k (x)

whereu = zzandv=(1 2z)(1 2).

I Similar closed-form expressions in other even dimensionsysemn
relations known in odd dimensions

I Alternatively can be viewed as eigenfunctions of the quadr&tasimir
of the conformal groufDolan, Osborn '03]



Latest Results
Generalization to Global Symmetries

Suppose ; is anSO(N) fundamental. The OPE is

X X X
i O+  Ogy*+ Oy
S* T+ A

and the 4pt function can be expanded in various tensor struciure

x29x2dh (X1) J()I>(<2) k(X3) |(X4)l

- O( ij kl)g (U V)

s+
X , 2

+ o kit ik ik 9 ~(u;v)
X ,

+ 6Cik jt it k)9 ;(u;v):



Latest Results
Generalization to Global Symmetries

Symmetry undeix; $ x3 andi $ k leads to the triple-sum rule:
[Rattazzi, Rychkov, Vichi '10]

o 1 0 c 1 0

X X 3 X
5@F . A+ 5@ 1 2)F . A+ 5@ F ;
s+ H T+ 1+ F)H A H

(HereH -~ (u;v)isF ~(u;v) with I +)

F .
A:O

I 3 sum rules$ 3 tensor structures



Latest Results
Generalization to Global Symmetries

Symmetry undeix; $ x3 andi $ k leads to the triple-sum rule:
[Rattazzi, Rychkov, Vichi '10]

o 1 0 c 1 0

X X 3 X
5@F . A+ 5@ 1 2)F . A+ 5@ F .
s+ H T+ 1+ F)H A H

(HereH -~ (u;v)isF ~(u;v) with I +)
I 3 sum rules$ 3 tensor structures

Similar rules for other global symmetries:

I SUN)! 6 sum rules
I N =1 SCFTs! 3 sum rules (sinc&J(1)r SO(2))

I O's in same SUSY multiplet have relateds: g - B
(superconformal blocks)DP, DSD '10; Fortin, Intnlugator Sterguou '11]



Latest Results

N =1 Superconformal Algebra

dim
+1 Pa
+1=2 Q Q
0 M DR M
1= S s
1 Ka;
fQ;Qy=P fS;Sg= K

I Superconformal primary meanj§;0(0)] =[S;0(0)] =0
I Descendants obtained by acting wif; Q; Q
I Chiral meandQ; (0)] =0



Latest Results
Superconformal Block Decomposition

. scalar chiral superconformal primary of dimensim an SCFT

| 1 | o 1 X o
h( x1) Y(x2) ( x3a) Y(Xa)i = —g2g i 0i’G :(u;v)
X12X34 o, v

I Sum over s.c. primarie® with R=0 and” =0;1;2:::
I X1 $ Xz gives crossing relation only involvir@ 2 y
I Additional constraints come from relation to OPE

Note: G ~(u;v) is a nite sum of conformal blocks, sind® has nite
number of descendants that are conformal primaries!



Latest Results
Superconformal Block Derivation

Multiplet built from O (generically) contains four conformal primaries with
vanishingR-charge and de nite spin:

name operator dim spin
@) @) I
J;N QQO+# PO +1 I+1;1 1

D Q2Q°0+#PQQO+#PPO +2 |

I Superconformal symmetry xes coe cients of

h YJi;h YNi;h VYDi interms ofh YOi
I Must also normalize); N; D to have canonical 2pt functions
I Superconformal block is then a sum gf +'s for O;J;N; D



Latest Results
Superconformal Blocks

We found,[DP, Simmons-Du n '10]

- ‘ (+ ) ‘ C 2 ‘
AT E RS A N A
(£ 2
6(+ +1( - 1=
I Unitarity bound "+ 2 saturated! multiplet shortened

I G . can also be determined from consistency with= 2
superconformal blocks computed Ipyolan, Osborn '01]

I Similar results for current 4pt functions recently derived [Byrtin,
Intriligator, Stergiou '11]



Higher-Spin Protected Operators in

Upper and lower bounds ONgo). : T=2;4,:::;10
(QO):

1,
0:5r

0:1r
0:05F

0:01¢

0:005___— |

0:001; 12 14 16 18 5 d

I OPE also has higher-spin protected operat(@0)-
I Gap since @©@o) = 2d+ " while (@20). ja2d 3j+3+°
I Dashed lines larg®t values...deviations tightly constrained!



Current 2pt Function Bounds in SCFTs

SUSY lower bound on for SU(N) adjoint currents,N = 2::15

O 1:2 1:4 1:6 1g ¢

| Lower bounds on coe cienty'J7i/ !V, if J' is the adjointSU(N)
global symmetry current appearing in' 1y



Current 2pt Function Bounds in SCFTs

SUSY lower bound on for singlet currents oSU(N), N =2::15

14 free |
12 free 7
10 free 7

8 free 7
6 free T

4 freet ——

2 free 7 ————

0

1 12 14 16 18

= d

I Bounds on coe cienthd'J7i/ Y assuming)' is asingletunder
the SU(N) global symmetry

I InSCFTs M = 3Tr(F'F’'R) is calculable!



Latest Results

Bounds on Current 2pt Function and Comparison to SC

SUSY lower bounds ong usingSU(N¢ )., Ny =2::15

18 free §,
16 free T
14 free ¥,
12 free
10 free 1
8 free ]
6 free T
4 free T

2 free | S e Jl
01 1:2 14 1.6 1.8 d
ConformalSU(N¢) SQCD:3N¢ <Nt < 3N, Mesons:M = QQ
I SUN¢)L SU(N¢)r: M MY JL+Jr+ i
I UseSU(N¢ )L crossing relations to bountlgrJri/ Rr

i — 3N _ 9 N2
Realized valuesdy = 3 N and R = BN




VERY PRELIMINARY: 3D Dimension Bounds

3D Dimension Bound

2

1:6
1.5
1:4
1:3
1:2

11

o5 52 53 54

[EI-Showk, Paulos, DP, Rychkov, Simmons-Du n, Vichi, in pogress]

I 3D Conformal Blocks computed numerically w/ recursion relations
I Bound computed via linear programming, using CPLEX



VERY PRELIMINARY: 3D Dimension Bounds

, 3D Dimension Bound

1.6
15
1:4
1:3
1:2
11

Lo 5 52 53 54

[El-Showk, Paulos, DP, Rychkov, Simmons-Du n, Vichi, in pogress]

I 3D Ising dimensions from Monte Carlo simulations and experisien
' 0:5182 0:0003 " 1:413 0:001 [Pelissetto, Vicari '02]



Latest Results

What else do we know about the 3D Ising Model?

| Operator | Spinl | Z; | | Exponent \
0 05182(3) | =1 =2+ =2
" 0 |+ |14131) | =3 1=
"0 0 | + |3.84(4) =3+ |
"00 0 + | 4.67(11) =3+ 1,
Tap 2 + |3 n/a
Cabed 4 | + |50208(12)| =3+ !

I Dimensions (critical exponents) taken frofRelissetto, Vicari '02]

I Theory: -expansion, highF expansion, Monte Carlo simulations
I Experiment: liquid-vapor transitions, ferromagnets, &ig uid mixtures



Latest Results

What else do we know about the 3D Ising Model?

| Operator | Spinl | Z; | | Exponent \
0 05182(3) | =1 =2+ =2
" 0 |+ |14131) | =3 1=
"0 0 | + |3.84(4) =3+ |
"00 0 + | 4.67(11) =3+ 1,
Tap 2 + |3 n/a
Cabed 4 | + |50208(12)| =3+ !

I Dimensions (critical exponents) taken frofRelissetto, Vicari '02]

Theory: -expansion, highF expansion, Monte Carlo simulations
Experiment: liquid-vapor transitions, ferromagnets, aig uid mixtures

I Can we learn about higher dimensional operators i#?
min » €xplore how allowed

Strategy: Assume o >

g is aected
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VERY PRELIMINARY: 3D Dimension Bounds
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VERY PRELIMINARY: 3D Dimension Bounds
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I 'We can plot the allowed gap in o as a function of
(assuming is within its error bars).



Latest Results

VERY PRELIMINARY: 3D Dimension Bounds
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I Imposing a spin-2 gap (o> min) carves out a very di erent region!



Latest Results

VERY PRELIMINARY: 3D Dimension Bounds
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[El-Showk, Paulos, DP, Rychkov, Simmons-Du n, Vichi, in pogress]

I Another way to view these constraints is by plotting the alkmivgap in
1o as a function of ...we'd like to better understand this structure!



