40 years of the Weyl anomaly

M. J. Duff

Physics Department Imperial College London

CFT Beyond Two Dimensions Texas A&M March 2012

Abstract

Classically, Weyl invariance

$$\mathcal{S}(g,\phi) = \mathcal{S}(g',\phi')$$

under

$$g'_{\mu\nu}(x) = \Omega(x)^2 g_{\mu\nu}(x) \quad \phi' = \Omega(x)^{\alpha} \phi$$

implies

$$g^{\mu
u} T_{\mu
u} = 0$$

But in the quantum theory

$$g^{\mu
u} < T_{\mu
u} >
eq 0$$

Over the period 1973-2012 this Weyl anomaly has found a variety of applications in quantum gravity, black hole physics, inflationary cosmology, string theory and statistical mechanics.

Recall flat space ancestry

ullet For spaces admitting conformal Killing vectors $\xi^i_\mu(x)$

$$abla_{\mu}\xi_{
u}^{i}+
abla_{
u}\xi_{\mu}^{i}=rac{2}{D}g_{\mu
u}
abla^{
ho}\xi_{
ho}^{i}$$

there is a classically conserved current

$$J^{i\nu}=\xi^i_\mu T^{\mu\nu}$$

- For example SO(D, 2) in flat Minkowski space
- But anomaly resides in the divergence of the dilatation current

$$|
abla_
u < J^{i
u}> = rac{1}{D}
abla^
ho \xi^i_
ho g^{\mu
u} < T_{\mu
u}>
eq 0$$

Coleman and Jackiw 1970

• 1973

Discovery of the Weyl anomaly using dimensional regularization

Capper and Duff

1975
 Supermultiplet of anomalies

 Ferrara and Zumino

1976

Non-local effective lagrangian for trace anomalies Deser, Duff and Isham Zeta functions, heat kernels and anomalies Christensen Dowker Hawking

The heat kernel

The one-loop effective action is given by

$$S_A = ln[det\Delta]^{-1/2}$$

where Δ is a conformally invariant d-dimensional operator. Its kernel $F(x, y, \rho)$ obeys the heat equation

$$\frac{\partial}{\partial \rho} F(x, y, \rho) + \Delta F(x, y, \rho) = 0$$

with the initial conditions

$$F(x, y, 0) = \delta(x, y)$$

The heat kernel

One can express F as

$$F(x, y, \rho) = \sum_{n} e^{-\rho \Delta} \phi_{n}(x) \phi_{n}(y)$$
$$= \sum_{n} e^{-\rho \lambda_{n}} \phi_{n}(x) \phi_{n}(y)$$

where ϕ_n are the eigenfunctions of Δ with eigenvalues λ_n :

$$\Delta\phi_n = \lambda_n\phi_n$$

normalized according to

$$\int d^d x \sqrt{g}(x) \phi_n(x) \phi_m(x) = \delta_{mn}$$

b₄ coefficients

The action may thus be written as

$$S_A = \int d\rho d^d x \rho^{-1} \sqrt{g}(x) A(x,\rho)$$

where $A(x, \rho) = F(x, x, \rho)$. $A(x, \rho)$ obeys an asymptotic expansion, valid for small ρ ,

$$A(x,\rho) \sim \sum_{n} B_n(x) \rho^{n-\frac{d}{2}}$$

where

$$B_n = \int d^d x \sqrt{g} b_n(x) \tag{1}$$

Zeta functions

• The Schwinger-DeWitt coefficients b_n are scalar polynomials, which are of order n in derivatives of the metric. In d=4, for example, when Δ is the conformally invariant Laplacian acting on scalars:

$$\Delta = -\Box + rac{1}{6}R$$
 $b_4 = rac{1}{2880\pi^2}[R_{\mu
u
ho\sigma}R^{\mu
u
ho\sigma} - R_{\mu
u}R^{\mu
u} + 30\Box R]$

Furthermore,

$$B_4 = n_0 + \zeta(0)$$

where n_0 is the number of zero modes and

$$\zeta(s) = \Sigma_n \ \lambda_n^{-s}$$

is defined only over the non-zero eigenvalues of Δ .

1977

CFTs and the *a* and *c* coefficients

Duff

Trace are realized and the Hauding

Trace anomalies and the Hawking effect Christensen and Fulling

CFTs

 Weyl anomalies appear in their most pristine form when CFTs are coupled to an external gravitational field. In this case

$${\cal A}=g^{\mu
u}\langle {\it T}_{\mu
u}
angle =rac{1}{(4\pi)^2}(c{\it F}-a{\it G})$$

where *F* is the square of the Weyl tensor:

$$F=C_{\mu
u
ho\sigma}C^{\mu
u
ho\sigma}=R_{\mu
u
ho\sigma}R^{\mu
u
ho\sigma}-2R_{\mu
u}R^{\mu
u}+rac{1}{3}R^2,$$

G is proportional to the Euler density:

$$G = R_{\mu
u
ho\sigma}R^{\mu
u
ho\sigma} - 4R_{\mu
u}R^{\mu
u} + R^2,$$

- Note no R² term.
- We ignore $\Box R$ terms whose coefficient can be adjusted to any value by adding the finite counterterm

$$\int d^4x \sqrt{g}R^2.$$

Central charges c and a

 In the CFT a and c are the central charges given in terms of the field content by

$$\bar{a} \equiv 720a = 2N_0 + 11N_{1/2} + 124N_1$$

 $\bar{c} \equiv 720c = 6N_0 + 18N_{1/2} + 72N_1$

where N_s are the number of fields of spin s.

In the notation of Duff 1977

$$(4\pi)^2 b = c \quad (4\pi)^2 b' = -a$$

Euler number

When F − G vanishes, anomaly reduces to

$$\mathcal{A} = A \frac{1}{32\pi^2} R^{*\mu\nu\rho\sigma} R^*_{\ \mu\nu\rho\sigma}$$

where

$$360A = \bar{c} - \bar{a} = 4N_0 + 7N_{1/2} - 52N_1$$

so that in Euclidean signature

$$\int d^4x \sqrt{g} g^{\mu\nu} T_{\mu\nu} = A\chi(M^4)$$

where $\chi(M^4)$ is the Euler number of spacetime.

1978
 Conformal (and axial) anomalies for arbitrary spin
 Christensen and Duff

Arbitrary spin

• Calculate b_4 for arbitrary (n, m) reps of Lorentz group, then physical anomaly given by

$$A = A(n,m) + A(n-1,m-1) - 2A(n-1/2,m-1/2)$$

so in total

$$A_{total} = 4N_0 + 7N_{1/2} - 52N_1 - 233N_{3/2} + 848N_2$$

where N_s are the number of fields of spin s.

 The b₄ coefficient for chiral reps (1/2,0) (1,0) etc also involve R*R unless we add (0,1/2) (0,1) etc

1980

Anomaly-driven inflation

Starobinsky

Vilenkin

p-forms and inequivalent anomalies

Duff and van Nieuwenhuizen

Grisaru et al

Siegel

The path-integral approach to anomalies

Fujikawa

Bastianelli and van Nieuwenhuizin

• 1981

Critical dimensions for bosonic and super strings Polyakov

Bosonic string

 In the first quantized theory of the bosonic string, one starts with a Euclidean functional integral

$$e^{-\Gamma} = \int rac{D\gamma \ DX}{Vol(Diff)} \ e^{-S[\gamma,X]}$$

where

$$S[\gamma, X] = \frac{1}{4\pi\alpha'} \int d^2\xi \sqrt{\gamma} \gamma^{ij} \partial_i X^{\mu} \partial_j X^{\nu} \eta_{\mu\nu}$$

 As shown by Polyakov, the Weyl anomaly in the worldsheet stress tensor is given by

$$\gamma^{ij} < T_{ij} > = \frac{1}{24\pi}(D-26)R(\gamma)$$

D is the contribution of the scalars while the -26 arises from the diffeomorphism ghosts that must be introduced into the functional integral.

Fermionic string

• In the case of the fermionic string, the result is

$$\gamma^{ij} < T_{ij} > = \frac{1}{16\pi}(D-10)R(\gamma)$$

• Thus the critical dimensions D=26 and D=10 correspond to the preservation of the two dimensional Weyl invariance $\gamma_{ij} \to \Omega^2(\xi)\gamma_{ij}$.

• 1983

Conformal anomaly and W-Z consistency (no R^2) Bonora et al Anomaly in conformal supergravity Fradkin and Tseytlin

1984

Local version of effective action Riegert

Local action

Conformal operators

$$egin{align} \sqrt{g}\Delta_d &= \sqrt{g'}\Delta'_d \ & \Delta_2 &= \Box \ & \Delta_4 &\equiv \Box^2 + 2R^{\mu
u}
abla_\mu
abla_
u + rac{1}{3}(
abla^\mu R)
abla_\mu - rac{2}{3}R\Box
abla_\mu
abla_$$

Riegert

- Subsequent work by Antoniadis, Mazur and Mottola
- Local action

$$S_{anom} = rac{b}{2} \int d^4 x \sqrt{g} F \phi - rac{b'}{2} \int d^4 x \sqrt{g} [\phi \Delta_4 \phi - (G - rac{2}{3} \Box R) \phi]$$

• 1985

Spacetime Einstein equations from vanishing worldsheet anomalies

Callan et al

• 1986 The *c*-theorem Zamolodchikov

1988

c-theorem and/or a-theorem in four dimensions?

Cardy

Osborn

Capelli et al

Shore

Shapere

Antoniadis et al

• 1993

Geometric classification of conformal anomalies in arbitrary dimensions

Deser and Schwimmer

• 1998

The holographic Weyl anomaly
Henningson and Skenderis
Graham and Witten
Imbimbo et al
Einstein manifolds and the *a* and *c* coefficients
Gubser

Holography

ullet A distinguished coordinate system, boundary at ho=0

$$G_{MN}dx^Mdx^N=rac{{L_{d+1}}^2}{4}
ho^{-2}d
ho d
ho+
ho^{-1}g_{\mu
u}dx^\mu dx^
u$$

The effective action may be written

$$S_B = \int d\rho d^d x \rho^{-1} \sqrt{g}(x) B(x,\rho)$$

where the specific form of $B(x, \rho)$ depends on initial action.

$$B(x,\rho) \sim \sum_{n} b_n(x) \rho^{n-\frac{d}{2}}$$

 Formal similarity with Schwinger-DeWitt coefficients, indeed A ∼ b₄ same for N=4 Yang-Mills but not in general.

2000

Anomaly-driven inflation revived
Hawking et al
a and c and corrections to Newton's law
Duff and Liu
Anomalies and entropy bounds
Nojiri et al

Corrections to Newton's law

 In his 1972 PhD thesis under Abdus Salam, the author calculated one-loop CFT corrections to Newton's law (Schwarzschild solution)

$$V(r) = \frac{G_4 M}{r} \left(1 + \frac{\alpha G_4}{r^2} \right),$$

where G_4 is the four-dimensional Newton's constant, $\hbar = c = 1$ and α is a purely numerical coefficient, soon recognized as the c coefficient in the Weyl anomaly

$$\alpha = \frac{8}{3\pi}c$$

N=4 Yang-Mills

• A particularly important example of a CFT is provided by $\mathcal{N}=4$ super Yang-Mills with gauge group U(N), for which

$$(N_1, N_{1/2}, N_0) = (N^2, 4N^2, 6N^2)$$

Then

$$a=c=\frac{N^2}{4}$$

and hence

$${\cal A} = rac{c}{(4\pi)^2} \Big(2 R_{\mu
u} R^{\mu
u} - rac{2}{3} R^2 \Big) = rac{{\cal N}^2}{32\pi^2} \Big(R_{\mu
u} R^{\mu
u} - rac{1}{3} R^2 \Big)$$

• The contribution of a single $\mathcal{N}=4$ U(N) Yang-Mills CFT is

$$V(r) = \frac{G_4M}{r} \left(1 + \frac{2N^2G_4}{3\pi r^2} \right).$$

Randall-Sundrum

 Now fast-forward to 1999 when Randall and Sundrum proposed that our four-dimensional world is a 3-brane embedded in an infinite five-dimensional universe. They showed that there is an r⁻³ correction coming from the massive Kaluza-Klein modes

$$V(r)=\frac{G_4M}{r}\bigg(1+\frac{2L_5^2}{3r^2}\bigg).$$

where L_5 is the radius of AdS₅.

- Superficially, our 4D quantum correction seems unrelated to their 5D classical one.
- But through the miracle of AdS/CFT

$$N^2 = \frac{\pi L_5^3}{2G_5} \quad G_4 = \frac{2G_5}{L_5}$$

the two are in fact equivalent. Duff and Liu

2001

 a and c and the graviton mass
 Dilkes et al

 Weyl cohomology revisited
 Mazur and Mottola

2005

Anomalies as an infra-red diagnostic; IR free or interacting?

Intriligator

2006

Macroscopic effects of the quantum trace anomaly Mottola et al

2007

Anomalies and the hierarchy problem Meissner

2008

Viscosity bounds
Buchel et al
Conformal collider physics
Hofman and Maldacena
Weyl invariance and mass
Waldron et al

2009

Entanglement Entropy

Nishioka

Log corrections to black hole entropy

Cai

Solodukin

Sen et al

2010

Holographic c-theorems in arbitrary dimensions Myers et al Generalized mirror symmetry and trace anomalies Duff and Ferrara

2011

Models for particle physics 't Hooft

Renormalization group and Weyl anomalies

Percacci

M-theory on X^7

• We consider compactification of $(\mathcal{N}=1,D=11)$ supergravity on a 7-manifold X^7 with betti numbers $(b_0,b_1,b_2,b_3,b_3,b_2,b_1,b_0)$ and define a generalized mirror symmetry

$$(b_0,b_1,b_2,b_3) \rightarrow (b_0,b_1,b_2-\rho/2,b_3+\rho/2)$$

under which

$$\rho(X^7) \equiv 7b_0 - 5b_1 + 3b_2 - b_3$$

changes sign

$$\rho \to -\rho$$

• The massless sectors of these compactifications have

$$f = 4(b_0 + b_1 + b_2 + b_3)$$

degrees of freedom.

• Generalized self-mirror theories are defined to be those for which $\rho = 0$

M-theory on X^7

 In backgrounds for which F – G vanishes, the Weyl anomaly reduces to

$$T = A \frac{1}{32\pi^2} R^{*\mu\nu\rho\sigma} R^*_{\ \mu\nu\rho\sigma} \tag{2}$$

where

$$A=2(c-a) \tag{3}$$

so that in Euclidean signature

$$\int d^4x \sqrt{g}T = A\chi(M^4) \tag{4}$$

where $\chi(M^4)$ is the Euler number of spacetime.

Anomalies

	Field	f	ΔA	360 <i>A</i>	360 <i>A</i> ′	<i>X</i> ⁷
9 _{MN}	$egin{array}{c} \mathcal{G}_{\mu u} \ \mathcal{A}_{\mu} \end{array}$	2	-3 0	848 -52	-232 -52	<i>b</i> ₀ <i>b</i> ₁
	\mathcal{A}	1	0	4	4	$-b_1 + b_3$
ψ_{M}	ψ_{μ}	2	1	-233	127	$b_0 + b_1$
	χ	2	0	7	7	$b_2 + b_3$
A_{MNP}	${\cal A}_{\mu u ho}$	0	2	-720	0	b_0
	$A_{\mu u}$	1	-1	364	4	b_1
	A_{μ}	2	0	-52	-52	b_2
	À	1	0	4	4	b_3

total
$$\triangle A$$
 0 total A $-\rho/24$ total A'

Vanish without a trace!

 $m{\circ}$ Remarkably, we find that the anomalous trace depends on ho

$$A=-\frac{1}{24}\rho(X^7)$$

So the anomaly flips sign under generalized mirror symmetry and vanishes for generalized self-mirror theories. For $X^{(8-\mathcal{N})} \times T^{(\mathcal{N}-1)}$ with $\mathcal{N} \geq 3$ the anomaly vanishes identically.

Duff and Ferrara

 Equally remarkable is that we get the same answer for the total trace using the numbers of Grisaru et al.

Four curious supergravities

Of particular interest are the four cases

$$(b_0,b_1,b_2,b_3)=(1,\mathcal{N}-1,3\mathcal{N}-3,4\mathcal{N}+3)$$

with $\mathcal{N}=1,2,4,8$, namely the four "curious" supergravities, discussed in Duff and Ferrara which enjoy some remarkable properties.

 $\mathcal{N} = 1$, 7 WZ multiplets, f = 32,

 $\mathcal{N}=2$, 3 vector multiplets, 4 hypermultiplets, f=64,

 $\mathcal{N} = 4$, 6 vector mutiplets, f = 128,

 $\mathcal{N} = 8$, f = 256.

O, H, C R theories

Field	360 <i>A</i>	0	Н	С	R
$g_{\mu u}$	848	1	1	1	1
$oldsymbol{\mathcal{B}}_{\mu}$ $oldsymbol{\mathcal{S}}$	-52	7	6	0	0
S	4	28	16	10	7
ψ_{μ}	-233	8	4	2	1
$\chi^{'}$	7	56	28	14	7
${m A}_{\mu u ho}$	-720	1	1	1	1
${m A}_{\mu u}$	364	7	3	1	0
$ ilde{m{A}}_{\mu}$	-52	21	6	4	0
À	4	35	19	11	7
		A = 0	A = 0	A = 0	A = 0

Table: Vanishing anomaly in O, H, C R theories.

Fano plane

Figure: The Fano plane has seven points and seven lines (the circle counts as a line) with three points on every line and three lines through every point. The truncation from 7 lines to 3 to 1 to 0 corresponds to the truncation from N=8 to N=4 to N=2 to N=1.

Type IIA

• In the case of $(\mathcal{N}=1,D=11)$ on $X^6\times S^1$, or equivalently (Type IIA, D=10) on X^6 ,

$$A=-\frac{1}{24}\chi(X^6)$$

and so in Euclidean signature

$$\int d^4x \sqrt{g}g_{\mu\nu} < T^{\mu\nu} > = -\frac{1}{24}\chi(M^4)\chi(X^6) = -\frac{1}{24}\chi(M^{10})$$

where $\chi(M^4)$ is the Euler number of spacetime.

Acknowledgements

- Grateful to Stanley Deser, Emil Mottola and Marc Grisaru for discussions.
- Thanks to the organizers for the invitation.