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Abstract

Classically, Weyl invariance

S(g, φ) = S(g′, φ′)

under
g′µν(x) = Ω(x)2gµν(x) φ′ = Ω(x)αφ

implies
gµνTµν = 0

But in the quantum theory

gµν < Tµν >6= 0

Over the period 1973-2012 this Weyl anomaly has found a
variety of applications in quantum gravity, black hole
physics, inflationary cosmology, string theory and statistical
mechanics.
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Recall flat space ancestry

For spaces admitting conformal Killing vectors ξi
µ(x)

∇µξi
ν +∇νξi

µ =
2
D

gµν∇ρξi
ρ

there is a classically conserved current

J iν = ξi
µTµν

For example SO(D,2) in flat Minkowski space
But anomaly resides in the divergence of the dilatation
current

∇ν < J iν >=
1
D
∇ρξi

ρg
µν < Tµν >6= 0

Coleman and Jackiw 1970
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Timeline

1973
Discovery of the Weyl anomaly using dimensional
regularization
Capper and Duff
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Timeline

1975
Supermultiplet of anomalies
Ferrara and Zumino
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Timeline

1976
Non-local effective lagrangian for trace anomalies
Deser, Duff and Isham
Zeta functions, heat kernels and anomalies
Christensen
Dowker
Hawking
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The heat kernel

The one-loop effective action is given by

SA = ln[det∆]−1/2

where ∆ is a conformally invariant d-dimensional operator.
Its kernel F (x , y , ρ) obeys the heat equation

∂

∂ρ
F (x , y , ρ) + ∆F (x , y , ρ) = 0

with the initial conditions

F (x , y ,0) = δ(x , y)
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The heat kernel

One can express F as

F (x , y , ρ) =
∑

n

e−ρ∆φn(x)φn(y)

=
∑

n

e−ρλnφn(x)φn(y)

where φn are the eigenfunctions of ∆ with eigenvalues λn:

∆φn = λnφn

normalized according to∫
ddx
√

g(x)φn(x)φm(x) = δmn
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b4 coefficients

The action may thus be written as

SA =

∫
dρddxρ−1√g(x)A(x , ρ)

where A(x , ρ) = F (x , x , ρ). A(x , ρ) obeys an asymptotic
expansion, valid for small ρ,

A(x , ρ) ∼
∑

n

Bn(x)ρn− d
2

where
Bn =

∫
ddx
√

gbn(x) (1)

9 / 50



Zeta functions

The Schwinger-DeWitt coefficients bn are scalar
polynomials, which are of order n in derivatives of the
metric. In d = 4, for example, when ∆ is the conformally
invariant Laplacian acting on scalars:

∆ = −� +
1
6

R

b4 =
1

2880π2 [RµνρσRµνρσ − RµνRµν + 30�R]

Furthermore,

B4 = n0 + ζ(0)

where n0 is the number of zero modes and

ζ(s) = Σn λ−s
n

is defined only over the non-zero eigenvalues of ∆.
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Timeline

1977
CFTs and the a and c coefficients
Duff
Trace anomalies and the Hawking effect
Christensen and Fulling
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CFTs

Weyl anomalies appear in their most pristine form when
CFTs are coupled to an external gravitational field. In this
case

A = gµν〈Tµν〉 =
1

(4π)2 (cF − aG)

where F is the square of the Weyl tensor:

F = CµνρσCµνρσ = RµνρσRµνρσ − 2RµνRµν +
1
3

R2,

G is proportional to the Euler density:

G = RµνρσRµνρσ − 4RµνRµν + R2,

Note no R2 term.
We ignore �R terms whose coefficient can be adjusted to
any value by adding the finite counterterm∫

d4x
√

gR2.
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Central charges c and a

In the CFT a and c are the central charges given in terms
of the field content by

ā ≡ 720a = 2N0 + 11N1/2 + 124N1

c̄ ≡ 720c = 6N0 + 18N1/2 + 72N1

where Ns are the number of fields of spin s.
In the notation of Duff 1977

(4π)2b = c (4π)2b′ = −a
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Euler number

When F −G vanishes, anomaly reduces to

A = A
1

32π2 R∗µνρσR∗µνρσ

where
360A = c̄ − ā = 4N0 + 7N1/2 − 52N1

so that in Euclidean signature∫
d4x
√

ggµνTµν = Aχ(M4)

where χ(M4) is the Euler number of spacetime.
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Timeline

1978
Conformal (and axial) anomalies for arbitrary spin
Christensen and Duff
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Arbitrary spin

Calculate b4 for arbitrary (n,m) reps of Lorentz group, then
physical anomaly given by

A = A(n,m) + A(n − 1,m − 1)− 2A(n − 1/2,m − 1/2)

so in total

Atotal = 4N0 + 7N1/2 − 52N1 − 233N3/2 + 848N2

where Ns are the number of fields of spin s.
The b4 coefficient for chiral reps (1/2,0) (1,0) etc also
involve R*R unless we add (0,1/2) (0,1) etc
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1980
Anomaly-driven inflation
Starobinsky
Vilenkin
p-forms and inequivalent anomalies
Duff and van Nieuwenhuizen
Grisaru et al
Siegel
The path-integral approach to anomalies
Fujikawa
Bastianelli and van Nieuwenhuizin

17 / 50



Timeline

1981
Critical dimensions for bosonic and super strings
Polyakov
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Bosonic string

In the first quantized theory of the bosonic string, one
starts with a Euclidean functional integral

e−Γ =

∫
Dγ DX

Vol(Diff )
e−S[γ,X ]

where

S[γ,X ] =
1

4πα′

∫
d2ξ
√
γγ ij∂iXµ∂jX νηµν

As shown by Polyakov, the Weyl anomaly in the worldsheet
stress tensor is given by

γ ij < Tij >=
1

24π
(D − 26)R(γ)

D is the contribution of the scalars while the −26 arises
from the diffeomorphism ghosts that must be introduced
into the functional integral.
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Fermionic string

In the case of the fermionic string, the result is

γ ij < Tij >=
1

16π
(D − 10)R(γ)

Thus the critical dimensions D = 26 and D = 10
correspond to the preservation of the two dimensional
Weyl invariance γij → Ω2(ξ)γij .
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Timeline

1983
Conformal anomaly and W-Z consistency (no R2)
Bonora et al
Anomaly in conformal supergravity
Fradkin and Tseytlin
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Timeline

1984
Local version of effective action
Riegert
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Local action

Conformal operators
√

g∆d =
√

g′∆′d

∆2 = �

∆4 ≡ �2 + 2Rµν∇µ∇ν +
1
3

(∇µR)∇µ −
2
3

R�

Riegert
Subsequent work by
Antoniadis, Mazur and Mottola
Local action

Sanom =
b
2

∫
d4x
√

gFφ−b′

2

∫
d4x
√

g[φ∆4φ−(G−2
3
�R)φ]
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Timeline

1985
Spacetime Einstein equations from vanishing worldsheet
anomalies
Callan et al
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Timeline

1986
The c-theorem
Zamolodchikov
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Timeline

1988
c-theorem and/or a-theorem in four dimensions?
Cardy
Osborn
Capelli et al
Shore
Shapere
Antoniadis et al
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Timeline

1993
Geometric classification of conformal anomalies in
arbitrary dimensions
Deser and Schwimmer

27 / 50



Timeline

1998
The holographic Weyl anomaly
Henningson and Skenderis
Graham and Witten
Imbimbo et al
Einstein manifolds and the a and c coefficients
Gubser
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Holography

A distinguished coordinate system, boundary at ρ = 0

GMNdxMdxN =
Ld+1

2

4
ρ−2dρdρ+ ρ−1gµνdxµdxν

The effective action may be written

SB =

∫
dρddxρ−1√g(x)B(x , ρ)

where the specific form of B(x , ρ) depends on initial action.

B(x , ρ) ∼
∑

n

bn(x)ρn− d
2

Formal similarity with Schwinger-DeWitt coefficients,
indeed A ∼ b4 same for N=4 Yang-Mills but not in general.
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Timeline

2000
Anomaly-driven inflation revived
Hawking et al
a and c and corrections to Newton’s law
Duff and Liu
Anomalies and entropy bounds
Nojiri et al
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Corrections to Newton’s law

In his 1972 PhD thesis under Abdus Salam, the author
calculated one-loop CFT corrections to Newton’s law
(Schwarzschild solution)

V (r) =
G4M

r

(
1 +

αG4

r2

)
,

where G4 is the four-dimensional Newton’s constant,
~ = c = 1 and α is a purely numerical coefficient, soon
recognized as the c coefficient in the Weyl anomaly

α =
8

3π
c
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N=4 Yang-Mills

A particularly important example of a CFT is provided by
N = 4 super Yang-Mills with gauge group U(N), for which

(N1,N1/2,N0) = (N2,4N2,6N2)

Then

a = c =
N2

4
and hence

A =
c

(4π)2

(
2RµνRµν − 2

3
R2
)

=
N2

32π2

(
RµνRµν − 1

3
R2
)

The contribution of a single N = 4 U(N) Yang-Mills CFT is

V (r) =
G4M

r

(
1 +

2N2G4

3πr2

)
.
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Randall-Sundrum

Now fast-forward to 1999 when Randall and Sundrum
proposed that our four-dimensional world is a 3-brane
embedded in an infinite five-dimensional universe. They
showed that there is an r−3 correction coming from the
massive Kaluza-Klein modes

V (r) =
G4M

r

(
1 +

2L5
2

3r2

)
.

where L5 is the radius of AdS5.
Superficially, our 4D quantum correction seems unrelated
to their 5D classical one.
But through the miracle of AdS/CFT

N2 =
πL3

5
2G5

G4 =
2G5

L5

the two are in fact equivalent. Duff and Liu
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Timeline

2001
a and c and the graviton mass
Dilkes et al
Weyl cohomology revisited
Mazur and Mottola
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Timeline

2005
Anomalies as an infra-red diagnostic; IR free or
interacting?
Intriligator
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Timeline

2006
Macroscopic effects of the quantum trace anomaly
Mottola et al
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Timeline

2007
Anomalies and the hierarchy problem
Meissner
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Timeline

2008
Viscosity bounds
Buchel et al
Conformal collider physics
Hofman and Maldacena
Weyl invariance and mass
Waldron et al
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Timeline

2009
Entanglement Entropy
Nishioka
Log corrections to black hole entropy
Cai
Solodukin
Sen et al
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Timeline

2010
Holographic c-theorems in arbitrary dimensions
Myers et al
Generalized mirror symmetry and trace anomalies
Duff and Ferrara
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Timeline

2011
Models for particle physics
’t Hooft
Renormalization group and Weyl anomalies
Percacci
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M-theory on X 7

We consider compactification of (N = 1,D = 11)
supergravity on a 7-manifold X 7 with betti numbers
(b0,b1,b2,b3,b3,b2,b1,b0) and define a generalized mirror
symmetry

(b0,b1,b2,b3)→ (b0,b1,b2 − ρ/2,b3 + ρ/2)

under which

ρ(X 7) ≡ 7b0 − 5b1 + 3b2 − b3

changes sign
ρ→ −ρ

The massless sectors of these compactifications have

f = 4(b0 + b1 + b2 + b3)

degrees of freedom.
Generalized self-mirror theories are defined to be those for
which ρ = 0 42 / 50



M-theory on X 7

In backgrounds for which F −G vanishes, the Weyl
anomaly reduces to

T = A
1

32π2 R∗µνρσR∗µνρσ (2)

where
A = 2(c − a) (3)

so that in Euclidean signature∫
d4x
√

gT = Aχ(M4) (4)

where χ(M4) is the Euler number of spacetime.
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Anomalies

Field f ∆A 360A 360A′ X 7

gMN gµν 2 −3 848 −232 b0
Aµ 2 0 −52 −52 b1
A 1 0 4 4 −b1 + b3

ψM ψµ 2 1 −233 127 b0 + b1
χ 2 0 7 7 b2 + b3

AMNP Aµνρ 0 2 −720 0 b0
Aµν 1 −1 364 4 b1
Aµ 2 0 −52 −52 b2
A 1 0 4 4 b3

total ∆A 0
total A −ρ/24
total A′ −ρ/24

Table: X 7 compactification of D=11 supergravity
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Vanish without a trace!

Remarkably, we find that the anomalous trace depends on
ρ

A = − 1
24
ρ(X 7)

So the anomaly flips sign under generalized mirror
symmetry and vanishes for generalized self-mirror
theories. For X (8−N ) × T (N−1) with N ≥ 3 the anomaly
vanishes identically.
Duff and Ferrara
Equally remarkable is that we get the same answer for the
total trace using the numbers of Grisaru et al.
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Four curious supergravities

Of particular interest are the four cases

(b0,b1,b2,b3) = (1,N − 1,3N − 3,4N + 3)

with N = 1,2,4,8, namely the four “curious”
supergravities, discussed in Duff and Ferrara which enjoy
some remarkable properties.
N = 1, 7 WZ multiplets, f = 32,
N = 2, 3 vector multiplets, 4 hypermultiplets, f = 64,
N = 4, 6 vector mutiplets, f = 128,
N = 8, f = 256.
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O, H, C R theories

Field 360A O H C R

gµν 848 1 1 1 1
Bµ −52 7 6 0 0
S 4 28 16 10 7
ψµ −233 8 4 2 1
χ 7 56 28 14 7
Aµνρ −720 1 1 1 1
Aµν 364 7 3 1 0
Aµ −52 21 6 4 0
A 4 35 19 11 7

A = 0 A = 0 A = 0 A = 0

Table: Vanishing anomaly in O, H, C R theories.
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Fano plane

A

B C

D E

F

G

Figure: The Fano plane has seven points and seven lines (the circle
counts as a line) with three points on every line and three lines
through every point. The truncation from 7 lines to 3 to 1 to 0
corresponds to the truncation from N=8 to N=4 to N=2 to N=1.
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Type IIA

In the case of (N = 1,D = 11) on X 6 × S1, or equivalently
(Type IIA, D=10) on X 6,

A = − 1
24
χ(X 6)

and so in Euclidean signature∫
d4x
√

ggµν < Tµν >= − 1
24
χ(M4)χ(X 6) = − 1

24
χ(M10)

where χ(M4) is the Euler number of spacetime.
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